• HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

    GNN 可以有邻接元素聚合方法,本文讨论了很多的 图变形和图的方法

    import torch
    from torch_geometric.nn.conv import MessagePassing
    from torch_geometric.utils import remove_self_loops
    
    from ..inits import reset
    
    
    class GINConv(MessagePassing):
        r"""The graph isomorphism operator from the `"How Powerful are
        Graph Neural Networks?" <https://arxiv.org/abs/1810.00826>`_ paper
    
        .. math::
            \mathbf{x}^{\prime}_i = h_{\mathbf{\Theta}} \left( (1 + \epsilon) \cdot
            \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \right),
    
        here :math:`h_{\mathbf{\Theta}}` denotes a neural network, *.i.e.* a MLP.
    
        Args:
            nn (torch.nn.Module): A neural network :math:`h_{\mathbf{\Theta}}` that
                maps node features :obj:`x` of shape :obj:`[-1, in_channels]` to
                shape :obj:`[-1, out_channels]`, *e.g.*, defined by
                :class:`torch.nn.Sequential`.
            eps (float, optional): (Initial) :math:`\epsilon` value.
                (default: :obj:`0`)
            train_eps (bool, optional): If set to :obj:`True`, :math:`\epsilon`
                will be a trainable parameter. (default: :obj:`False`)
            **kwargs (optional): Additional arguments of
                :class:`torch_geometric.nn.conv.MessagePassing`.
        """
    
        def __init__(self, nn, eps=0, train_eps=False, **kwargs):
            super(GINConv, self).__init__(aggr='add', **kwargs)
            self.nn = nn
            self.initial_eps = eps
            if train_eps:
                self.eps = torch.nn.Parameter(torch.Tensor([eps]))
            else:
                self.register_buffer('eps', torch.Tensor([eps]))
            self.reset_parameters()
    
        def reset_parameters(self):
            reset(self.nn)
            self.eps.data.fill_(self.initial_eps)
    
    
        def forward(self, x, edge_index):
            """"""
            x = x.unsqueeze(-1) if x.dim() == 1 else x
            edge_index, _ = remove_self_loops(edge_index)
            out = self.nn((1 + self.eps) * x + self.propagate(edge_index, x=x))
            return out
    
    
        def message(self, x_j):
            return x_j
    
        def __repr__(self):
            return '{}(nn={})'.format(self.__class__.__name__, self.nn)
    


    文章里说,本文提出的所有卷积是最好的卷积

    上一篇:
    megvii-01
    下一篇:
    SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
    本文目录
    本文目录